General Chemistry 1
Quarter 2 - Module 6
Carbon Compounds

Name of Learner: ___________________________

Grade & Section: ___________________________

Name of School: ___________________________
What I Need to Know

Some hydrocarbons have the same molecular formula but have different molecular structures. Have you ever met a pair of identical twins? Identical twins have the same genetic makeup, yet they are two separate individuals with different personalities. Isomers are similar to twins—they have the same molecular formula, but different molecular structures and properties. This module will provide you with information and simple activities that will help you understand hydrocarbon isomers.

After going through this module, you are expected to:

1. Describe structural isomerism; give examples (STEM_GC11OCIIg-j-89)
2. Describe some simple reactions of organic compounds: combustion of organic fuels, addition, condensation, and saponification of fats (STEM_GC11OCIIg-j-90)

Hydrocarbons are carbon-containing organic compounds that provide a source of energy and raw materials. If you have ridden in a car or a bus, you have used hydrocarbons. The gasoline and diesel fuel that are used in cars, trucks, and buses are hydrocarbons. To know more about hydrocarbons, you may answer this activity. Have fun!

What’s In

Activity 1. Match Me!

Directions: Match column A (molecular formula) with column B (name of the alkane). Write the letter of the correct answer on the space provided before each number.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Formula</td>
<td>Alkane Name</td>
</tr>
<tr>
<td>___1. CH₄</td>
<td>A. Propane</td>
</tr>
<tr>
<td>___2. C₃H₈</td>
<td>B. Methane</td>
</tr>
<tr>
<td>___3. C₄H₁₀</td>
<td>C. Butane</td>
</tr>
</tbody>
</table>

Did you find the activity easy? How was your score? Well, I guess you are now ready to answer the next activity. God speed!
Activity 2: Bonding Time!

A hydrocarbon having only single bonds is defined as a saturated hydrocarbon. A hydrocarbon that has at least one double or triple bond between carbon atoms is an unsaturated hydrocarbon. Alkanes are hydrocarbons that have only single bonds between atoms. Alkenes are hydrocarbons that contain at least one double bond, and alkynes are hydrocarbons that contain at least one triple bond.

Objectives:
1. Classify each compound as saturated or unsaturated.
2. Identify if the hydrocarbon is alkane, alkene or alkyne.

Directions: Classify each compound as saturated or unsaturated. Identify each as an alkane, an alkene, or an alkyne. Check the box in each column that corresponds to the correct answer. Note that test item one is given as an example.

<table>
<thead>
<tr>
<th>Structural Formula</th>
<th>Saturated/Unsaturated</th>
<th>Alkane/Alkene/Alkyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. </td>
<td>☐ Saturated ☐ Unsaturated</td>
<td>☐ Alkane ☐ Alkene ☐ Alkyne</td>
</tr>
<tr>
<td>2. </td>
<td>☐ Saturated ☐ Unsaturated</td>
<td>☐ Alkane ☐ Alkene ☐ Alkyne</td>
</tr>
<tr>
<td>3. </td>
<td>☐ Saturated ☐ Unsaturated</td>
<td>☐ Alkane ☐ Alkene ☐ Alkyne</td>
</tr>
<tr>
<td>4. </td>
<td>☐ Saturated ☐ Unsaturated</td>
<td>☐ Alkane ☐ Alkene ☐ Alkyne</td>
</tr>
<tr>
<td>5. </td>
<td>☐ Saturated ☐ Unsaturated</td>
<td>☐ Alkane ☐ Alkene ☐ Alkyne</td>
</tr>
</tbody>
</table>

Were you able to classify and identify the hydrocarbons? If yes, then that’s great because the next activity will focus on the molecular structure of some compounds. Way to go! Come, on!
Activity 3: Reaction It Is!

Directions: Identify the type of reactions presented below. Choose the letter of the correct answer inside the box. Write only the letter in the space provided before each number.

_1. gives off a large amount of heat, thus its use in oxyacetylene torches for welding metals
_2. results when other atoms bond to each of two atoms bonded by double or triple covalent bonds
_3. reactions where one molecule adds to another to form a single product
_4. reaction where hydrogen is added to compounds containing double bonds usually in the presence of a catalyst
_5. characterized by the joining of two molecules and the elimination of a small molecule, usually water

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. substitution</td>
<td>D. combustion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. addition</td>
<td>E. condensation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. saponification</td>
<td>F. hydrogenation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity 4: Know Me Better

Objective:

1. Describe the difference in the molecular structures of butane and isobutane.

Directions: Observe the molecular structures of butane and isobutane and fill in the table below. Answer the question that follows.

![Figure 1. Butane is a fuel used in lighters. Isobutane is used as a propellant in products such as shaving gel.](image)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Use/Uses</th>
<th>Molecular Formula</th>
<th>Molecular Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butane</td>
<td></td>
<td>C₄H₁₀</td>
<td></td>
</tr>
<tr>
<td>Isobutane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Describe the difference in the molecular structures of butane and isobutane.
(4 pts.)

__

What is It

In activity 1, you matched the structural formulae of the compounds into its chemical formula. In activity 2, you identified the hydrocarbons based on the type of carbon bond. In activity 3, you described the difference in the molecular structure of butane and isobutane.

Organic compounds contain carbon, which is able to form straight chains and branched chains. Hydrocarbons are carbon-containing organic compounds that provide a source of energy and raw materials. Today, a hydrocarbon having only single bonds is defined as a saturated hydrocarbon. A hydrocarbon that has at least one double or triple bond between carbon atoms is an unsaturated hydrocarbon. Alkanes are hydrocarbons that contain only single bonds. For alkanes, the relationship between the numbers of carbon and hydrogen atoms can be expressed as \(C_nH_{2n+2} \), where \(n \) is equal to the number of carbon atoms in the alkane.

Branched-Chain Alkanes

Now look at the two structures in Figure 1 in activity 3, if you count the carbon and hydrogen atoms, you will discover that both structures have the same molecular formula, \(C_4H_{10} \). Do the structures in Figure 1 represent the same substance?

If you think that the structures represent two different substances, you are correct. The structure on the left represents butane, and the structure on the right represents a branched-chain alkane known as isobutane—a substance whose chemical and physical properties are different from those of butane. Carbon atoms can bond to one, two, three, or even four other carbon atoms. This property makes possible a variety of branched-chain alkanes.

Cycloalkanes

One of the reasons that such a variety of organic compounds exists is that carbon atoms can form ring structures. An organic compound that contains a hydrocarbon ring is called a cyclic hydrocarbon. To indicate that a hydrocarbon has a ring structure, the prefix cyclo- is used with the hydrocarbon name. Thus, cyclic hydrocarbons that contain only single bonds are called cycloalkanes. Cycloalkanes can have rings with three, four, five, six, or even more carbon atoms.

Figure 2. Cycloalkanes
Alkenes and Alkynes

Alkenes are hydrocarbons that contain at least one double bond, and alkynes are hydrocarbons that contain at least one triple bond. Recall that alkanes are saturated hydrocarbons because they contain only single covalent bonds between carbon atoms, and that unsaturated hydrocarbons have at least one double or triple bond between carbon atoms. Unsaturated hydrocarbons that contain one or more double covalent bonds between carbon atoms in a chain are called **alkenes**. The general formula for the series is \(C_nH_{2n}\).

Alkynes

Unsaturated hydrocarbons that contain one or more triple bonds between carbon atoms in a chain are called **alkynes**. Triple bonds involve the sharing of three pairs of electrons. The simplest and most commonly used alkyne is ethyne (\(C_2H_2\)), which is widely known by its common name **acetylene**. Alkynes with one triple covalent bond form a homologous series with the general formula \(C_nH_{2n-2}\).

Hydrocarbon Isomers

Some hydrocarbons have the same molecular formula but have different molecular structures.

Structural Isomers

Examine the models of three alkanes in Figure 3 to determine how they are similar and how they are different. All three have 5 carbon atoms and 12 hydrogen atoms, so they have the molecular formula \(C_5H_{12}\). However, as you can see, these models represent three different arrangements of atoms and three different compounds—pentane, 2-methylbutane, and 2,2-dimethylpropane. These three compounds are isomers. Isomers are two or more compounds that have the same molecular formula but different molecular structures. Note that cyclopentane and pentane are not isomers because cyclopentane’s molecular formula is \(C_5H_{10}\). There are two main classes of isomers. Figure 3 shows compounds that are examples of structural isomers. Structural isomers have the same chemical formula, but their atoms are bonded in different arrangements. Structural isomers have different chemical and physical properties despite having the same formula. This observation supports one of the main principles of chemistry: The structure of a substance determines its properties. How does the trend in boiling points of \(C_5H_{12}\) isomers relate to their molecular structures? As the number of carbons in a hydrocarbon increases, the number of possible structural isomers increases. For example, there are nine alkanes with the molecular formula \(C_7H_{16}\). There are more than 300,000 structural isomers with the formula \(C_{20}H_{42}\).

Figure 3. These compounds with the same molecular formula, \(C_5H_{12}\), are structural isomers.
Stereoisomers

The second class of isomers involves a more subtle difference in bonding. Stereoisomers are isomers in which all atoms are bonded in the same order but are arranged differently in space. There are two types of stereoisomers. One type occurs in alkenes, which contain double bonds. Two carbon atoms with a single bond between them can rotate freely in relationship to each other.

The arrangement in which the two methyl groups are on the same side of the molecule is indicated by the prefix *cis*-. The arrangement in which the two methyl groups are on opposite sides of the molecule is indicated by the prefix *trans*-. These terms derive from Latin: *cis* means *on the same side*, and *trans* means *across from*. Because the double-bonded carbon atoms cannot rotate, the *cis*- form cannot easily change into the *trans*- form. Isomers resulting from different arrangements of groups around a double bond are called geometric isomers.

Aromatic Hydrocarbons

Aromatic hydrocarbons are unusually stable compounds with ring structures in which electrons are shared by many atoms.

Aromatic Compounds

Organic compounds that contain benzene rings as part of their structures are called aromatic compounds. The term *aromatic* was originally used because many of the benzene-related compounds known in the nineteenth century were found in pleasant-smelling oils that came from spices, fruits, and other plant parts. Hydrocarbons such as the alkanes, alkenes, and alkynes are called aliphatic compounds to distinguish them from aromatic compounds. The term *aliphatic* comes from the Greek word for *fat*, which is *aleiphatos*. Early chemists obtained aliphatic compounds by heating animal fats.

Reactions of Organic Compounds

A. Under suitable conditions, alkanes undergo combustion reactions to produce carbon dioxide and water.

\[
\text{CH}_4(g) + 2 \text{O}_2(g) \rightarrow \text{CO}_2(g) + 2 \text{H}_2\text{O}(l)
\]

\[
2 \text{C}_2\text{H}_6(g) + 7 \text{O}_2(g) \rightarrow 4 \text{CO}_2(g) + 6 \text{H}_2\text{O}(l)
\]

B. Addition Reactions: Unsaturated hydrocarbons commonly undergo addition reactions where one molecule adds to another to form a single product.

Hydrogenation is an example of an addition reaction where hydrogen is added to compounds containing double bonds usually in the presence of a catalyst.

Alkenes also undergo addition reactions involving hydrogen halide, HX (where X is a halogen).

\[
\text{C}_2\text{H}_4(g) + \text{HX}(g) \rightarrow \text{H}_3\text{CCH}_2\text{X}(g)
\]

\[
\text{C}_2\text{H}_4(g) + \text{X}_2(g) \rightarrow \text{CH}_2\text{XCH}_2\text{X}(g)
\]

C. Substitution reactions – an atom or group of atoms replaces an atom or group of atoms in another molecule.

D. A condensation reaction is characterized by the joining of two molecules and the elimination of a small molecule, usually water.
E. A common reaction of esters is saponification. In this reaction, an ester reacts with aqueous NaOH solution to produce back the carboxylic acid and the alcohol. This reaction originates from soapmaking. Soap (Latin “sapo”) was originally produced by the hydrolysis of fats.

What’s More

Activity 5.1: It’s Boxing Time

Directions: Box the three isomers of C₅H₁₂ below.

![Chemical structures of isomers]

Activity 5.2: Shade on Me

Directions: Shade the correct answer in the corresponding column using the given description.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. alkanes that contain at least one carbon-carbon double bond</td>
<td>CH₄</td>
</tr>
<tr>
<td></td>
<td>C₃H₆</td>
</tr>
<tr>
<td>2. alkynes that contain at least one C-C triple bond</td>
<td>Propane</td>
</tr>
<tr>
<td></td>
<td>Ethyne (acetylene)</td>
</tr>
<tr>
<td>3. alkanes whose carbon atoms are joined in rings</td>
<td>methane</td>
</tr>
<tr>
<td></td>
<td>cycloalkane</td>
</tr>
<tr>
<td>4. geometric isomer across from each other</td>
<td>cis isomer</td>
</tr>
<tr>
<td></td>
<td>trans isomer</td>
</tr>
<tr>
<td>5. hydrocarbons having the same molecular formula but different molecular structure</td>
<td>stereoisomer</td>
</tr>
<tr>
<td></td>
<td>structural isomer</td>
</tr>
</tbody>
</table>
What I Have Learned

Activity 6: Where Do I Belong?

Directions: Classify each compound as cis isomer or trans isomer. Check only one item in the appropriate column. In the second column, check if it is a cis isomer or trans isomer. In the third column, check the correct description of the structure. In the fourth column, check the correct example of cis or trans isomer.

<table>
<thead>
<tr>
<th>Structural Formula</th>
<th>Cis isomer/Trans isomer</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■ Cis isomer</td>
<td>■ same side</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Trans isomer</td>
<td>■ opposite side</td>
<td></td>
</tr>
</tbody>
</table>

Activity 7: How Do I React?

Directions: Identify the type of reaction by putting a check inside the box in column 2. In the third column, put a check that corresponds to the correct description of the reaction.

<table>
<thead>
<tr>
<th>Reaction Formula</th>
<th>Type of Reaction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ + 2 O₂ → CO₂ + 2H₂O</td>
<td>■ Combustion</td>
<td>■ a hydrocarbon reacts with oxygen, forming CO₂ and H₂O</td>
</tr>
<tr>
<td></td>
<td>■ Addition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Substitution</td>
<td></td>
</tr>
</tbody>
</table>
In the previous activities, you were able to classify the structural isomers of hydrocarbons. To wrap it up, you will draw some structural isomers of a compound. If you find it difficult, well it is time to make use of google. You’re almost done!

What I Can Do

Activity 8: Let’s Draw

Directions: In your home, search for products which contain hydrocarbons and draw its structure here. Just give at least one. You will be rated according to the rubrics below.

<table>
<thead>
<tr>
<th>Scoring Rubrics</th>
<th>10</th>
<th>7</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT</td>
<td>The output exhibits completeness and correctness of content.</td>
<td>The output partly exhibits completeness and correctness of content.</td>
<td>The output does not exhibit completeness and correctness of content.</td>
</tr>
<tr>
<td>LABELS</td>
<td>Has all accurate labels.</td>
<td>Has some accurate detail.</td>
<td>Has little or no accurate details.</td>
</tr>
<tr>
<td>PRESENTATION</td>
<td>Everything is neat and easy to read.</td>
<td>Some is neat and easy to read.</td>
<td>Little or no neatness.</td>
</tr>
</tbody>
</table>

Source: https://www.teacherspayteachers.com/Product/FREE-Science-Rubric-Scientific-Drawings-PDF-Not-Editable-5159762
Directions: Choose the letter of the best answer. Write your answer on the space provided before each number.

____1. Which compound must be present in an organic compound?
 A. Carbon B. Oxygen C. Nitrogen D. Hydrogen

____2. Which statement explains why the element carbon forms so many compounds?
 A. Carbon atoms combine readily with oxygen.
 B. Carbon atoms have a very high electronegativity.
 C. Carbon readily forms ionic bonds with other carbon atoms.
 D. Carbon readily forms covalent bonds with other carbon atoms.

____3. Which formula represents a saturated hydrocarbon?
 A. C₂H₂ B. C₃H₄ C. C₆H₆ D. C₄H₈

____4. What is the general formula for the members of the alkane series?
 A. CₙH₂n B. CₙH₂n-2 C. CₙH₂n+2 D. CₙH₂n-6

____5. Which type of bond will carbon commonly form?
 A. Covalent B. Ionic C. Metallic D. None of these

____6. Which of the following could be an isomer of the molecule below?

 A.
 B.
 C.
 D.

____7. All of these hydrocarbons are unsaturated except for
 A. Benzene B. Alkenes C. Alkanes D. Alkynes

____8. Which term best describes the structures below?

 A. structural isomers C. optical isomers
 B. geometric isomers D. stereoisotopes

____9. What are isomers? Isomers are compounds that
1. have the same number of carbon atoms but a different number of hydrogen atoms
2. have the same number of hydrogen atoms but a different number of carbon atoms
3. have the same number and kind of atoms in a molecule but differ in structure
4. have the same kind of atoms in their molecular formulas but differ in the number of these atoms present

10. What is the correct name for the alkene \(\text{CH}_3\text{CH}==\text{CH}_2 \)?
 A. propene B. prop-2-ene C. 2-propene D. prop-3-ene

11. Which alkene exhibits geometrical isomerism?
 A. 2-butene C. propene
 B. 2-methyl-2-butene D. 2-methylpropene

12. Which of the structures below is not an isomer of pentane?

 ![Structures](image.png)
 A.
 B.
 C.
 D.

13. Given the equation: \(\text{CH}_4 + \text{Br}_2 \rightarrow \text{CH}_3\text{Br} + \text{HBr} \). Which type of reaction does this reaction represent?
 A. addition C. saponification
 B. substitution D. esterification

14. Which of the following is an addition reaction?
 A. \(\text{C}_2\text{H}_4 + \text{Cl}_2 \rightarrow \text{C}_2\text{H}_2\text{Cl}_2 \)
 B. \(\text{C}_2\text{H}_6 + \text{Cl}_2 \rightarrow \text{C}_2\text{H}_5\text{Cl} + \text{HCl} \)
 C. \(\text{C}_3\text{H}_8 + \text{HBr} \rightarrow \text{C}_3\text{H}_7\text{Br} + \text{H}_2 \)
 D. \(\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \)

15. All of the following are chain isomers of each other, except one. Which is the exception?

 ![Structures](image1.png)
 A.
 B.
 C.
 D.

Did you have fun answering the module? Well, I hope so. This time you will do an additional activity to add your knowledge about the lesson.
Additional Activities

Activity 11: Organic Compound Report

1. Choose an organic compound and present it as a poster. You must indicate the following:
 a. Chemical name and chemical formula of the organic compound
 b. Structure of the organic compound (identify the functional group/s if any)
 c. Properties of the organic compound (physical and chemical)
 d. Use of the organic compound in everyday life
 e. Effects to humans and other living things
 f. Precautions in using the compound (if any)

2. A rubric will be used to evaluate your work.

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>1 (NOT VISIBLE)</th>
<th>2 (NEEDS IMPROVEMENT)</th>
<th>3 (MEETS EXPECTATIONS)</th>
<th>4 (EXCEEDS EXPECTATIONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED ELEMENTS</td>
<td>Missing most or all of the required elements.</td>
<td>Few of the required elements are clearly visible, organized and well placed.</td>
<td>Most of the required elements are clearly visible, organized and well placed.</td>
<td>All of the required elements are clearly visible, organized and well placed.</td>
</tr>
<tr>
<td>VISUAL CLARITY AND APPEAL</td>
<td>The project needs significant improvement in design, layout and neatness.</td>
<td>The project needs improvement in design, layout or neatness.</td>
<td>The project has a nice design and layout. It is neat and easy to read.</td>
<td>The project has an excellent design and layout. It is neat and easy to understand the content.</td>
</tr>
<tr>
<td>DRAWINGS/GRAPHICS</td>
<td>The student’s drawings are not clear or relevant.</td>
<td>Few of the drawings and graphics are clear and relevant.</td>
<td>Most drawings and graphics are clear and relevant.</td>
<td>Drawings and graphics are clear and relevant.</td>
</tr>
<tr>
<td>MECHANICS</td>
<td>Many grammatical, spelling or punctuation errors.</td>
<td>A few grammatical, spelling or punctuation errors.</td>
<td>Almost no grammatical, spelling or punctuation errors.</td>
<td>No grammatical, spelling or punctuation errors.</td>
</tr>
</tbody>
</table>
Draw your poster here. (16 points)
(What's In) Activity 1
1. B
2. A
3. C

(What's New) Activity 2
1. alkane, saturated
2. alkene, unsaturated
3. alkane, saturated
4. alkyn, unsaturated
5. alkyn, unsaturated

(What's New) Activity 3
1. alkane, saturated
2. alkane, saturated
3. alkene, unsaturated
4. alkyne, unsaturated
5. alkyne, unsaturated

(What's More) Activity 5.1
1. CH4
2. Ethyne
3. cycloalkane
4. trans isomer
5. structural isomer

(What Have I Learned) Activity 6
1. trans isomer, opposite side,
2. cis isomer, same side,
3. cis isomer, same side,
4. cis isomer, same side,
5. structural isomer

(What have I learned) Activity 7
1. combustion, all hydrocarbon reacts with oxygen, forming CO2 and H2O
2. addition, no H atoms removed; Cl added to propene (lost the C=C)
3. substitution, a Cl replaces one of the H in the hydrocarbon

Assessment
1. A
2. D
3. C
4. C
5. A
6. B
7. C
8. B
9. C
10. A
11. D
12. B
13. A
14. B
15. A

Development Team

<table>
<thead>
<tr>
<th>Writer:</th>
<th>Jonalyn C. Sayson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editors:</td>
<td>Margie Lou C. Jacob, Laarni A. Adonis, Kathleen Joy B. Padilla, Joly C. Baradero</td>
</tr>
<tr>
<td>Reviewer:</td>
<td>Sandy R. Albarico</td>
</tr>
<tr>
<td>Illustrator:</td>
<td></td>
</tr>
<tr>
<td>Layout Artist:</td>
<td></td>
</tr>
<tr>
<td>Management Team:</td>
<td>Majaranji M. Jacinto, CESO VI SDS-ZDS</td>
</tr>
<tr>
<td>Visminda Q. Valde, Ed.D</td>
<td>ASDS</td>
</tr>
<tr>
<td>Raymond M. Salvador, Ed.D</td>
<td>ASDs</td>
</tr>
<tr>
<td>Juliet M. Magallanes, Ed.D</td>
<td>CID Chief</td>
</tr>
<tr>
<td>Florencio R. Caballero, DTE</td>
<td>EPS-LRMD</td>
</tr>
<tr>
<td>Sandy R. Albarico</td>
<td>EPS -Science</td>
</tr>
</tbody>
</table>

Region IX Hymn

Mi último adiós

Ora por todos cuantos murieron sin ventura. Por tantos padecieron tormentos sin igual. Por nuestras pobres madres que gimen su amargura. Por la ternura y virtud, por presencia en tortura Y ora por ti que vayas a la redención final.

Y cuando en noche oscura se ensombra el cementerio Y sobre sotano morientes veas velando allí, No turbes su reposo, no turbes el entierro. Tal vez acontez casas de clarín o solitario. Soy yo, querida Patria, yo que te lanzo a ti.

Y cuando yo me tumbe de veces alentados. No tengas mi padre que manchó su sangre. Deja que el ame el hombre, la espasa con la ajada. Y mis cenizas, antes que volver a la nada. El polvo de tu alfombra que sobresale tomar.

Donde la fe no mata, donde el que reina es opresor. Adiós, dulce extranjera, mi amiga, mi alegría, Amigos de la infancia, en el perdido hogar. ¡Adiós, querido seres, morir es descansar. Adiós, padre y hermanos, trozos del alma mía. Querida Filipinas, oye el postrer adiós. Mi patria idolatrada, dolor de mis cenizas. Con el corazón y virtud, con los lights, haciendo. Cada día más claro, más brillante, más fresca, más florida. "Adiós, querida Patria, mi patria, en este cielo, gema."

Donde la fe no mata, donde el que reina es opresor. Adiós, dulce extranjera, mi amiga, mi alegría, Adiós, querido seres, morir es descansar. Adiós, dulce extranjera, mi amiga, mi alegría, Adiós, querido seres, morir es descansar.

José Rizal, 1896