Physical Science
Quarter 1 – Module 3: Polarity of Molecules
Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may, among other things, impose as a condition the payment of royalties.

Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this module are owned by their respective copyright holders. Every effort has been exerted to locate and seek permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them.

Published by the Department of Education
Secretary: Leonor Magtolis Briones
Undersecretary: Diosdado M. San Antonio

<table>
<thead>
<tr>
<th>Development Team of the Module</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Writers:</strong> Bayani T. Vicencio, Valeria Amor C. Rosita</td>
</tr>
</tbody>
</table>
| **Editors:** Priscilla D. Domino  
Gertrudes L. Malabanan |
| **Reviewers:** Rogelio D. Canuel, Elmer C. Bobis, Gertrudes L. Malabanan, |
| **Illustrator:** Geselle A. Teaño |
| **Layout Artist:** Elsie R. Reyes |
| **Management Team:** Wilfredo E. Cabral  
Job S. Zape Jr.  
Eugenio S. Adrao,  
Elaine T. Balaogan  
Helen A. Ramos  
Rhina O. Ilagan  
Edna U. Mendoza  
Ronaldo V. Ramilo |

Printed in the Philippines by ________________________

Department of Education – Region IV-A

Office Address: Gate 2 Karangalan Village, Barangay 1900, Cainta, Rizal 1800
Telefax: 02-8682-5773/8684-4914/8647-7487
E-mail Address: region4a@deped.gov.ph/ict.calabarzon@deped.gov.ph
Physical Science

Quarter 1 – Module: 3
Introductory Message

For the facilitator:

Welcome to the Physical Science Grade 11 Alternative Delivery Mode (ADM) Module on Polarity of Molecules!

This module was collaboratively designed, developed and reviewed by educators both from public and private institutions to assist you, the teacher or facilitator in helping the learners meet the standards set by the K to 12 Curriculum while overcoming their personal, social, and economic constraints in schooling.

This learning resource hopes to engage the learners into guided and independent learning activities at their own pace and time. Furthermore, this also aims to help learners acquire the needed 21st century skills while taking into consideration their needs and circumstances.

In addition to the material in the main text, you will also see this box in the body of the module:

Notes to the Teacher
This contains helpful tips or strategies that will help you in guiding the learners.

As a facilitator you, are expected to orient the learners on how to use this module. You also need to keep track of the learners’ progress while allowing them to manage their own learning. Furthermore, you are expected to encourage and assist the learners as they do the tasks included in the module.
For the learner:

Welcome to the Physical Science Grade 11 Alternative Delivery Mode (ADM) Module on Polarity of Molecules!

The hand is one of the most symbolic part of the human body. It is often used to depict skill, action and purpose. Through our hands we may learn, create and accomplish. Hence, the hand in this learning resource signifies that you as a learner is capable and empowered to successfully achieve the relevant competencies and skills at your own pace and time. Your academic success lies in your own hands!

This module was designed to provide you with fun and meaningful opportunities for guided and independent learning at your own pace and time. You will be enabled to process the contents of the learning resource while being an active learner.

This module has the following parts and corresponding icons:

- **What I Need to Know**: This will give you an idea of the skills or competencies you are expected to learn in the module.

- **What I Know**: This part includes an activity that aims to check what you already know about the lesson to take. If you get all the answers correctly (100%), you may decide to skip this module.

- **What’s In**: This is a brief drill or review to help you link the current lesson with the previous one.

- **What’s New**: In this portion, the new lesson will be introduced to you in various ways such as a story, a song, a poem, a problem opener, an activity or a situation.

- **What is It**: This section provides a brief discussion of the lesson. This aims to help you discover and understand new concepts and skills.

- **What’s More**: This comprises activities for independent practice to solidify your understanding and skills of the topic. You may check the answers to the exercises using the Answer Key at the end of the module.

- **What I Have Learned**: This includes questions or blank sentence/paragraph to be filled in to process what you learned from the lesson.

- **What I Can Do**: This section provides an activity which will help you apply your new knowledge or skill into real life situations or concerns.
This is a task which aims to evaluate your level of mastery in achieving the learning competency.

In this portion, another activity will be given to you to enrich your knowledge or skill of the lesson learned. This also tends retention of learned concepts.

This contains answers to all activities in the module.

At the end of this module you will also find:

**References**

This is a list of all sources used in developing this module.

The following are some reminders in using this module:

1. Use the module with care. Do not put unnecessary mark/s on any part of the module. Use a separate sheet of paper in answering the exercises.
2. Don’t forget to answer *What I Know* before moving on to other activities included in the module.
3. Read the instruction carefully before doing each task.
4. Observe honesty and integrity in doing the tasks and checking your answers.
5. Finish the task at hand before proceeding to the next.
6. Return this module to your teacher/facilitator once you are through with it.

If you encounter any difficulty in answering the tasks in this module, do not hesitate to consult your teacher or facilitator. Always bear in mind that you are not alone.

We hope that through this material, you will experience meaningful learning and gain deep understanding of the relevant competencies. You can do it!
What I Need to Know

This module was designed and written with you in mind. It is here to help you determine if a molecule is polar or non-polar. The scope of this module permits it to be used in many different learning situations. The language used recognizes the varied vocabulary level of students. The lessons are arranged to follow the standard sequence of the course. But the order in which you read them can be changed to correspond with the textbook you are now using.

The module is divided into three lessons, namely:

- Lesson 1 – Polarity of Molecules

After going through this module, you are expected to:
1. differentiate polar and nonpolar bonds;
2. determine the polarity of chemical bonds between atoms using the concept of electronegativity;
3. familiarize with the different molecular shapes;
4. explain how polarity of bonds and molecular geometry affects the polarity of molecules.
What I Know

Choose the letter of the best answer. Write the chosen letter on a separate sheet of paper.

1. ___ refers to the ability of an atom in a molecule to attract shared electrons.
   a. Electron affinity
   b. Electronegativity
   c. Ionization energy
   d. Electromotive force

2. Which of the following statements is TRUE about polar bonds?
   a. They are present in metals.
   b. They are responsible for the formation of ionic compounds.
   c. They always result to the formation of polar molecular compounds.
   d. They may result to nonpolar covalent compounds depending on molecular geometry.

3. What type of chemical bond holds the atoms of water molecule together?
   a. Hydrogen bond
   b. Ionic bond
   c. Polar covalent bond
   d. Nonpolar covalent bond

4. Which of the following molecule is nonpolar?
   a. NaCl
   b. HCl
   c. CO₂
   d. NH₃

5. What is the electronegativity difference of C - O?
   a. 0
   b. 0.5
   c. 1.0
   d. 1.5

6. Supposedly a hypothetical molecule has an electronegativity difference of 0.5, what is the type of chemical bond present?
   a. Ionic
   b. Hydrogen
   c. Polar covalent
   d. Nonpolar covalent
7. What is the molecular shape of BeF₃?
   a. Linear
   b. Trigonal
   c. Tetrahedral
   d. Trigonal bipyramidal

8. A molecule can have a polar bond and still be nonpolar overall. The statement is __
   a. True
   b. False
   c. Maybe

9. A polar covalent bond would form in which of the following pairs of atoms?
   a. Cl-Cl
   b. Mg-O
   c. N-H
   d. C-S

10. A molecule shape is a three-dimensional arrangement of atoms or bonding groups around a central atom. The molecular shape is governed by the valence shell electron repulsion (VSEPR) theory.
    a. The first and second statements are true.
    b. The first and second statements are false.
    c. The first statement is true while the second statement is false.
    d. The first statement is false while the second statement is true.

True or False: Write TRUE if the statement is correct, otherwise write FALSE.

11. The general trend of electronegativity as you move from top to bottom of the periodic table is increasing.
12. Flourine has the greatest electronegativity while cesium and francium have the least electronegativity value.
13. Water, with a bent molecular shape, is classified as a polar molecule.
14. Sulfur hexafluoride (SF₆) has six bonded electrons and no lone pair in its central atom.
15. Hydrogen cyanide (HCN) exhibits a linear geometry.
Lesson 1

Polarity of Molecules

It is interesting to have a quick glance at the lessons you have learned about compounds and chemical bonds when you were in Grades 8, 9 and 10. Can you still recall them? Great!

In Grade 8, you learned that atoms combine to form molecules or compounds thus making them more stable by achieving a stable configuration satisfying the Octet Rule. On the other hand, you learned about chemical bonds or intramolecular forces and its three types such as ionic, covalent and metallic and the writing of Lewis dot symbol in Grade 9. While in your Grade-10 Science, you have learned the concepts of electronegativity and you were briefly introduced to the topic polarity of molecules using the electronegativity values.

Studying this module will certainly increase your understanding about the polarity of molecules. This module is packed with interesting activities which will make you enjoy your Chemistry lessons even more. So, are you ready to delve on an exciting quest for chemistry learning? You may start now by doing the activity below. Goodluck and happy learning!

What’s In

Chemical bonds are formed when atoms lose, accept or share electrons. An ionic bond occurs when there is a transfer of one or more valence electrons form one atom to another. It exists between metal and nonmetal atoms where metal loses electron/s while nonmetal accepts the electron/s donated by metal. On the other hand, when two nonmetal atoms combine, neither of them loses or gains electron Instead, electron pairs are being shared by both atoms and the type of chemical bond formed is called covalent bond.
Tell whether the compound below is an ionic compound (IC) or covalent compound (CC) based on the type of chemical bond present.

___1.  NaCl  
___2.  CO₂  
___3.  CaCl₂  
___4.  CCl₄  
___5.  Fe₂O₃  
___6.  N₂O  
___7.  PCl₅  
___8.  KBr  
___9.  HCl  
___10.  AlCl₃

**Answer:** NaCl, CaCl₂, Fe₂O₃, KBr, and AlCl₃ are all ionic compounds because the atoms involved are combination of metal and nonmetal. On the other hand, CO₂, CCl₄, N₂O, PCl₅, and HCl are covalent compounds because the atoms involved are both nonmetals.

It’s good that you were able to recall the difference between ionic bond and covalent bond.

You have learned that a covalent is a shared pair of electrons between two atoms. But are the electrons equally shared by the combining atoms? How does a polar covalent bond differ from a nonpolar covalent? Did you know that electronegativity of an atom can be used to further classify covalent bond into polar and nonpolar?

As you perform the activity below, you will find out that substances have different polarities, and this explains why there are substances that do not mix while others do.
What’s New

Activity 1: Polarity Experiment

Materials:

- Water
- Vinegar
- Oil
- Alcohol
- 6 disposable glasses
- spoon

Procedure:

1. Obtain 6 clean disposable glasses and prepare the following set-up.
   - Set-up 1: 1 cup water + 5 tablespoons vinegar
   - Set-up 2: 1 cup water + 5 tablespoons oil
   - Set-up 3: 1 cup water + 5 tablespoons alcohol
   - Set-up 4: 1 cup vinegar + 5 tablespoons oil
   - Set-up 5: 1 cup vinegar + 5 tablespoons alcohol
   - Set-up 6: 5 tablespoon oil + 5 tablespoons alcohol

2. Thoroughly stir each mixture and observe carefully.
   - Note: Do not forget to wash and dry the spoon after each use.
     - Properly label each set-up.
     - Samples with oil should first be mixed with dishwashing liquid before disposing down the sink

Guide Question:

a. Which of the following set-ups mixed well? Which did not?
b. What can you infer from the result of this activity?

Or if not feasible, this activity may be performed instead.

Calculate the electronegativity difference and give the type of bond that exists between the atoms in each of the following pairs.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>EN of the first atom</th>
<th>EN of the 2nd atom</th>
<th>Δ EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NaCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. NH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. CH₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. H₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. H₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is It

The polarity of molecules is determined by the two factors: the polarity of bonds based on the electronegativity difference of the atoms involved and the geometrical shape of the molecules which can be predicted via valence shell electron pair repulsion (VSEPR) theory.

A. Polarity of Bonds and Electronegativity

In your grade 9 chemistry, you have tackled the lesson on the periodic properties of elements such as atomic size, metallic property, ionization energy, electron affinity and electronegativity. Can you still recall the definition of electronegativity? If not, no problem because I will define it for you.

Electronegativity (EN) measures the relative tendency of an atom to attract electrons to itself when chemically combined with other atom. Take a look at the electronegativity values of some elements on Fig.1. What have you noticed? Correct! It increases within period (from left to right) and decreases within a group (from top to bottom). Take note also that the higher the value of EN, the more it tends to attract electron towards itself.

So what is the connection of electronegativity to the polarity of bonds? We could use the electronegativity values of the atoms involved to get the absolute electronegativity difference (ΔEN) which will help us in predicting what type of chemical bond (ionic, polar covalent or nonpolar covalent) that would exist between them. Table 1 shows the type of bond based on the electronegativity difference of bonded atoms.

![Pauling Electronegativity Values](image)

Figure 1. Pauling Electronegativity values of some elements
Table 1. Type of bond based on electronegativity difference (ΔEN) of bonded atoms

<table>
<thead>
<tr>
<th>Type of Bond</th>
<th>Electronegativity Difference (ΔEN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionic</td>
<td>≥1.7</td>
</tr>
<tr>
<td>Polar Covalent</td>
<td>0.5 to 1.6</td>
</tr>
<tr>
<td>Nonpolar Covalent</td>
<td>≤ 0.4</td>
</tr>
</tbody>
</table>

For example, you are asked to predict what type of bond is present between the following pairs of atoms by determining their electronegativity difference.

1. Ca and Cl
2. Cl and Cl
3. H and Cl
4. S and O
5. C and N

Solution:

1. \( \text{EN}_{\text{Ca}} = 1.0 \quad \text{(ΔEN)} = 1.0 - 3.0 = | -2.0 | = 2.0 \) ionic bond
   \( \text{EN}_{\text{Cl}} = 3.0 \)

2. \( \text{EN}_{\text{Cl}} = 3.0 \quad \text{(ΔEN)} = 3.0 - 3.0 = 0 \) nonpolar covalent bond
   \( \text{EN}_{\text{Cl}} = 3.0 \)

3. \( \text{EN}_{\text{H}} = 2.1 \quad \text{(ΔEN)} = 2.1 - 3.0 = | -0.9 | = 0.9 \) polar covalent bond
   \( \text{EN}_{\text{Cl}} = 3.0 \)

4. \( \text{EN}_{\text{S}} = 2.5 \quad \text{(ΔEN)} = 2.5 - 3.5 = | -1.0 | = 1.0 \) polar covalent bond
   \( \text{EN}_{\text{O}} = 3.5 \)

5. \( \text{EN}_{\text{C}} = 2.5 \quad \text{(ΔEN)} = 2.5 - 3.0 = | -0.5 | = 0.5 \) polar covalent bond
   \( \text{EN}_{\text{N}} = 3.0 \)

Using the above examples, let us know more about polar and nonpolar covalent bonds. A polar covalent bond is formed when electrons are shared unequally by two atoms in a compound. The bonded pair of atoms form an electric dipole (represented by \( \rightarrow \)). Dipole means “two poles” which means that a molecule has one positive end and one negative end. In this type of bond, the atom with the higher EN value becomes the partial negative pole (symbolized as \( \delta^- \)) while the atom with the lower EN value becomes the partially positive (symbolized as \( \delta^+ \)) pole. Always bear in mind that the direction of the arrow is always pointing from a more electropositive pole to the more electronegative pole. Take HCl for example, H is has higher EN than Cl, thus the direction of the arrow is from H pointing to Cl and there is unequal electron density as represented by a size of the circle (refer to figure 2). On the other hand, a nonpolar covalent bond develops if both atoms equally share a pair of electrons between them.
This occurs when the bonding atoms have approximately equal EN value or equal ability to attract electrons to each side. Nonpolar covalent bond is an example of bond formed when two chlorine atoms combine.

![Diagram](image_url)

Figure 2. (a) Polar bond between H and Cl and (b) nonpolar bond between two Cl atoms

**B. Polarity of Molecules and Molecular Geometry**

You just have learned how to predict the type of bond polarity simply by calculating the electronegativity difference of atoms (specifically two atoms). The next question is, how about for those molecules consisting of more than two atoms like H₂O, CCl₄, NH₃ and CO₂? For polyatomic molecules, both the bond polarity and molecular shape determine the overall molecular polarity. In terms of molecular geometry, the valence shell electron pair repulsion (VSEPR) theory would help us to determine the spatial arrangement of atoms in a polyatomic molecule.

You can predict the shape or molecular geometry of a substance using the following steps:

1. **Step 1:** Determine the central atom of a molecule. The central atom is the least electronegative element.
2. **Step 2:** Draw the appropriate Lewis dot structure for the molecule.
3. **Step 3:** Count the number of bonding pairs of electrons and non-bonding (or lone pairs) around the central atom.
4. **Step 4:** Determine the electron pair orientation using the total number of electron pairs.
5. **Step 5:** Name the shape of based on the location of the atoms

![Diagram](image_url)

Figure 3. Different Molecular Shapes
Consider the examples below:

Example 1: Predict the molecular geometry of BCl₃

Step 1: ENₐ = 2.0 ENCl = 3.0 therefore, B will be the central atom and three Cl atoms are attached to it. By looking at the chemical formula, you will also have an idea that boron will be the central atom and three atoms of choline are attached to it.

Step 2:

```
  Cl
 /    \
B  Cl
```

Step 3: The central atom has three electron pairs: 3 bonded pairs and no lone pair
Step 4: The electron pair orientation for three electrons is trigonal planar.
Step 5: The molecular shape of BCl₃ is trigonal planar.

Example 2: Predict the molecular geometry of CO₂

Step 1: ENC = 2.5 ENO = 3.0 therefore, C will be the central atom and two O atoms will be attached to it. (Use may also use the chemical formula to predict which atom will be the central atom.

Step 2:

```
  O=C=O
```

Step 3: For the purpose of determining the position of the bonding pairs, let us count the double bonds as one bonding pair. Therefore, CO₂ has two bonding pairs of electron.
Step 4: The electron pair orientation for two electron pairs is linear.
Step 5: The molecular shape of CO₂ is linear.

Example 3: Predict the molecular geometry of CHCl₃.

Step 1: ENC = 2.5, ENH = 2.1 and ENCl = 3.0. Because carbon is less electronegative than chlorine and hydrogen is normally terminal atom, C must be the central atom.

Step 2:

```
  H
 /    \
::Cl--C--Cl:
 /    \
::Cl:
```

Step 3: There are four bonding electron pairs.
Step 4: The electron pair orientation for four electron pairs is tetrahedral.
Step 5: The molecular shape of CHCl₃ is linear.
Now that you have learned how to determine the molecular geometry, let us now go on to our discussion of polarity of molecules based on molecular shapes. You may study the diagram below and we will use it as our guide.

![Flowchart to determine if a molecule is polar or nonpolar](image)

Figure 4. Flowchart to determine if a molecule is polar or nonpolar

Going back to our previous examples, let us try to determine the polarity of molecules of BCl₃, CO₂ and CHCl₃.

For both BCl₃ and CO₂, the atoms are symmetrically arranged (trigonal planar and linear) and the attached atoms to the central atom are also the same. You must also take note that in a symmetrical molecule, the sum of the bond dipole is equal to zero (because they cancel out) which leads to the formation of nonpolar molecule. Therefore, both BCl₃ and CO₂ are nonpolar. On the other hand, CHCl₃, although it has a symmetrical arrangement (tetrahedral), the atoms attached to the central atom are not all the same (3 chlorine atoms and 1 hydrogen atom). This causes CHCl₃ to become a polar molecule.

Now, let us see if you fully understood our discussion. I want you to try answering the exercises below.
Identify which molecule is polar and which is nonpolar given the Lewis structure and molecular shapes of the following molecules.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Lewis Structure</th>
<th>Molecular Geometry (based on VSEPR)</th>
<th>Molecular Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NH₃</td>
<td>H(\text{N})H</td>
<td>Trigonal pyramidal</td>
<td></td>
</tr>
<tr>
<td>2. H₂O</td>
<td>O:H:H</td>
<td>Bent or angular</td>
<td></td>
</tr>
<tr>
<td>3. CCl₄</td>
<td>Cl:Cl:Cl:Cl</td>
<td>Tetrahedral</td>
<td></td>
</tr>
<tr>
<td>4. HBr</td>
<td>H:Br</td>
<td>Linear</td>
<td></td>
</tr>
</tbody>
</table>

If you were able to answer that NH₃ and H₂O are polar molecules because the bond dipole cannot be cancelled because of the presence of lone pairs on the central atom and CCl₄ and HBr are nonpolar molecules, you are correct. Job well done! You may now proceed to the rest of this module.

**What’s More**

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Lewis Structure</th>
<th>ΔEN</th>
<th>Bond Polarity</th>
<th>Molecular Geometry</th>
<th>Polarity of Molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PCl₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. BeCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. CH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. OF₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. SF₆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So far, we have discussed how polarity of molecules is being determined. At this point, you will perform the activity below to find out if you fully understood our topic. If you think you need to go back to the discussion part of this module while answering this activity, please feel free to do so.
What I Have Learned

In your own words, differentiate polar and nonpolar covalent bond.

1. What is electronegativity and how can it be used in determining the polarity of molecules?
2. Is it possible for a molecule to have a polar bond but have an overall polarity of nonpolar?
3. Differentiate bonding and non-bonding electrons.

What I Can Do

Answer the following questions below:

1. Ammonia (NH₃) is polar molecule while boron trifluoride (BF₃) is a nonpolar molecule. Explain the difference in the polarity of these compounds.
2. Suppose that ABₓE, a hypothetical molecule, is discovered. Predict whether the molecule is polar or nonpolar by determining its molecular shape.
   
   Note: A – corresponds to central atom,
   B - terminal atom
   E – lone pair (nonbonding electrons)

Assessment

Multiple Choice. Choose the letter of the best answer. Write the chosen letter on a separate sheet of paper.

1. The following molecules have polar covalent bonds EXCEPT?
   a. NH₃
   b. CS₂
   c. BCl₃
   d. HBr

2. Which of the following bonds is the MOST polar?
   a. H-Cl
   b. C-Cl
   c. H-H
   d. N-F
3. What is the molecular shape of CHBr₃?
   a. Linear
   b. Trigonal planar
   c. Trigonal bipyramidal
   d. Tetrahedral

4. A nonpolar covalent bond would form in which of the following pairs of atoms?
   a. Na-Cl
   b. Ca-O
   c. P-N
   d. C-S

5. From the given Lewis structure of NH₃, how many nonbonding pair/s of electron are around the central atom?
   a. 0
   b. 1
   c. 2
   d. 3

6. Which of the following statements is INCORRECT?
   a. Polar covalent bonds can be present in a nonpolar molecule.
   b. Polar covalent bond is present if the electronegativity difference between atoms is equal or less than 0.4.
   c. Polarity of bond and molecular geometry are the two factors that affect the polarity of molecules.
   d. Polar bond forms when electrons are unequally shared by two atoms in a compound.

7. What do you call the relative ability of a bonded atom to attract shared electron pairs?
   a. Electron affinity
   b. Electronegativity
   c. Ionization energy
   d. Metallic property

8. Which description below correctly describes polar molecules?
   a. Have polar bonds present.
   b. The polar bonds are arranged so that they do not cancel.
   c. Lone pairs on the central atom are arranged so that they do not cancel.
   d. Lone pairs on the central atom are arranged so that they can be cancelled out.
9. Which of the following molecules is tetrahedral?
   a. H₂O  
   b. SF₆  
   c. CH₄  
   d. BF₃

10. Which of the following is NOT TRUE about CO₂?
    a. Has an electronegativity difference of 1.0
    b. Polar bond is present
    c. Has a linear molecular shape
    d. Is a polar molecule

True or False: Write TRUE if the statement is correct, otherwise write FALSE.

11. S and O are bonded by a polar covalent bond because its electronegativity difference value is 1.0.

12. Atoms with high electronegativity have a greater tendency to attract electrons toward itself.

13. Polarity of molecules are determined both by polarity of bonds and molecular geometry.

14. Among C-Cl, H-Cl, C-H and Cl-Cl, only Cl-Cl is polar.

15. Methyl alcohol, CH₃OH, is a nonpolar molecule.

**Additional Activities**

Analyze the following statements and determine if it is correct or wrong.

1. SiCl₄ is a nonpolar molecule.

________________________________________________________________________
________________________________________________________________________

2. H₂S has a linear molecular geometry.

________________________________________________________________________
________________________________________________________________________

3. PF₅ is a polar molecule.

________________________________________________________________________
## Answer Key

<table>
<thead>
<tr>
<th>Assesment</th>
<th>What's More</th>
<th>What I Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. T</td>
<td>1. I.C</td>
<td>1. B</td>
</tr>
<tr>
<td>14. T</td>
<td>2. C.C</td>
<td>2. D</td>
</tr>
<tr>
<td>11. T</td>
<td>5. I.C</td>
<td>5. C</td>
</tr>
</tbody>
</table>

## Molecular Geometry

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Geometry</th>
<th>Polarity</th>
<th>Bond Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Octahedral</td>
<td>Polar</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Linear</td>
<td>Non-Polar</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Tetrahedral</td>
<td>Non-Polar</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Octahedral</td>
<td>Polar</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Bent</td>
<td>Polar</td>
<td>Polar</td>
</tr>
</tbody>
</table>

## What I Know

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Geometry</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Octahedral</td>
<td>Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Linear</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Tetrahedral</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Octahedral</td>
<td>Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Bent</td>
<td>Polar</td>
</tr>
</tbody>
</table>

## Polar or Non-Polar

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Polar or Non-Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Polar</td>
</tr>
</tbody>
</table>

## Bond Polarity

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Bond Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Polar</td>
</tr>
</tbody>
</table>

## Molecular Geometry

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Octahedral</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Linear</td>
</tr>
<tr>
<td>CH₄</td>
<td>Tetrahedral</td>
</tr>
<tr>
<td>SF₆</td>
<td>Octahedral</td>
</tr>
<tr>
<td>OF₂</td>
<td>Bent</td>
</tr>
</tbody>
</table>

## Bond Polarity

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Bond Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Polar</td>
</tr>
</tbody>
</table>

## Molecular Geometry

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Octahedral</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Linear</td>
</tr>
<tr>
<td>CH₄</td>
<td>Tetrahedral</td>
</tr>
<tr>
<td>SF₆</td>
<td>Octahedral</td>
</tr>
<tr>
<td>OF₂</td>
<td>Bent</td>
</tr>
</tbody>
</table>

## Bond Polarity

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Bond Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>BeCl₂</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>CH₄</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>SF₆</td>
<td>Non-Polar</td>
</tr>
<tr>
<td>OF₂</td>
<td>Polar</td>
</tr>
</tbody>
</table>
What I Have Learned

17

In your own words, differentiate polar and nonpolar covalent bonds.

Answer: Bonding electrons are those electrons involved in the formation of covalent bonds while lone pair (nonbonding electrons) refers to a pair of valence electrons that is not shared with another atom in a covalent bond.

2. What is electronegativity and how can it be used in determining the polarity of molecules?

Answer: Electronegativity measures the tendency of an atom in a molecule to attract shared electrons toward itself. The concept of electronegativity can be used to predict whether the bond will be polar or nonpolar. If the ∆EN is 0.4 or less, the bond is nonpolar. But if the ∆EN is beyond 0.4 but less than 1.7, the bond is polar. The electronegativity of molecules is the sum of the electronegativities of the atoms that form the molecule.

3. Is it possible for a molecule to have a polar bond but have an overall polarity of nonpolar?

Answer: Yes. Because polarity of molecule is determined both by the polarity of bond and molecular geometry. A molecule can have a polar covalent bond but still be classified as a nonpolar molecule as long as its molecular geometry satisfies the condition of VSEPR theory.

4. Differentiate bonding and nonbonding electrons.

Answer: Bonding electrons are those electrons involved in the formation of covalent bonds while lone pair (nonbonding electrons) refers to a pair of valence electrons that is not shared with another atom in a covalent bond.
Additional Activities:

1. Ammonia (NH₃) is a polar molecule while boron trifluoride (BF₃) is a nonpolar molecule. Explain the difference in the polarity of these compounds.

   **Answer:** Polarity of a molecule is determined by its molecular shape. Since NH₃ has a trigonal pyramidal shape, with four electron pairs (3 bonding pairs and 1 nonbonding pair/lone pair), it makes it polar. On the other hand, BF₃ has a trigonal planar geometry which gives it an unpolar nature.

2. Suppose that AB₃E₂, a hypothetical molecule, is discovered. Predict whether the molecule is polar or nonpolar by determining its molecular shape.

   **Answer:** Using the concept of VSEPR theory, a molecule with an AB₃E₂ configuration will exhibit a trigonal pyramidal shape and therefore it is nonpolar.
References


For inquiries or feedback, please write or call:

Department of Education - Bureau of Learning Resources (DepEd-BLR)

Ground Floor, Bonifacio Bldg., DepEd Complex
Meralco Avenue, Pasig City, Philippines 1600

Telefax: (632) 8634-1072; 8634-1054; 8631-4985

Email Address: blr.lrqad@deped.gov.ph * blr.lrp@deped.gov.ph